Status of cryospheric observations and gaps in China

Xiao Cunde
(SKLCS, CAREERI, CAS; also CAMS, CMA)

Beijing, Dec. 3, 2013
Potential impacted area

Most direct impacted area

High Asia Cryosphere

- ~45% world population
- 3 oceans
- arid/semi-arid
Outline

• Glacier (Chinese Acad. Sci--CAS)
• Snow cover (China Meteor. Adm.)
• Frozen ground/permafrost (CAS, CMA)
• Sea ice (National Oceanography Adm.)
• River ice (Ministry of Water Resources)
• Gaps
Glaciers monitored in long-term and summer season

Legend

- **Black**: Long-term stations (3)
- **Blue**: Monitor sites (6)
- **Red**: New sites (8)
Permafrost observation network in this region
Surface soil temperature, therefore **seasonal frozen ground** are monitored country-wide.

- more than 2400 stations
- 8 layers: 5cm, 10cm, 15cm, 20cm, 40cm, 80cm, 160cm, 320cm
Snow cover observations at meteorological stations

- **daily**
 - Snow depth
 - Snow pressure
- **monthly**
 - Max. snow depth
 - Max. snow pressure
 - Snow cover days
- **Number of stations** is almost steady since 1960s.
Problems for daily snow cover data

- Around 756 stations, but with some data problems:
 - Stations with both SD and SP in the same day at least 1 day in a year (filled circle)
 - No data at all ("+") in figure
 - Missing either SD or SP in each day (open circle)
Anomaly of sea ice changes in Bohai Sea

(Blue bars: sea ice; Red curve: solar activity; Red bars: ENSO)
In average, 3 day earlier for break-up, 5 days later for freeze-up, 8 days shorter of frost duration in north China rivers
Observation: GAPS

Annual Global Monitoring 1-15/10/2008

SYNOP reports made at 06, 12 and 18 UTC at RBSN stations

Percentage of reports received:
- 90 to 100 per cent (2912 stations)
- 45 to 90 per cent (697 stations)
- Less than 45 per cent (325 stations)
- Silent stations (350 stations)

The designation employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the WMO Secretariat concerning the legal status of any country, territory, city or area.
Area above 4000 m a.s.l.
Area above 5000 m a.s.l.
Area above 6000 m a.s.l.
<table>
<thead>
<tr>
<th>Applications</th>
<th>Essential Cryospheric Variables (ECV) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIP3-5, CLM, Snow-melt floods forecast, degree-day model, energy-balance model</td>
<td>Area ((S)), depth ((h)), SWE, snow cover duration ((SCD)), albedo, density, water content, accumulation, submilation, snow temperature, rainfall ratio, surface energy exchange</td>
</tr>
</tbody>
</table>

* Green: operated ECV
Gaps ___ glacier

<table>
<thead>
<tr>
<th>Applications</th>
<th>Essential Cryospheric Variables (ECV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dynamic models,</td>
<td>Mass balance (MB), ELA, terminal position, ice temperature, ice flow, geometric shape (length, width, area, thickness, volume), surface energy balance</td>
</tr>
<tr>
<td>• Meltwater runoff,</td>
<td></td>
</tr>
<tr>
<td>• Basin-scale degree-day model (DDF),</td>
<td></td>
</tr>
<tr>
<td>• Energy-balance model</td>
<td></td>
</tr>
</tbody>
</table>

* Green: operated ECV
Gaps ___ frozen ground

<table>
<thead>
<tr>
<th>Applications</th>
<th>Essential Cryospheric Variables (ECV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Permafrost models,</td>
<td>Soil temperature, ice content, ACL, zero curtain, soil types, humus, vegetation types, talik, surface energy balance, low limit, geomorphology</td>
</tr>
<tr>
<td>• CLM,</td>
<td></td>
</tr>
<tr>
<td>• FG-Atmospheric coupled models</td>
<td></td>
</tr>
<tr>
<td>• FG-vegetation coupled models</td>
<td></td>
</tr>
</tbody>
</table>

* Green: operated ECV
<table>
<thead>
<tr>
<th>Applications</th>
<th>Essential Cryospheric Variables (ECV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea ice models</td>
<td>concentration, thickness, area, open water, snow cover on ice, roughness (ridging), frozen date, melt off date, salinity, ice temperature, transparency, flow vector, surface energy balance</td>
</tr>
<tr>
<td>Fishing</td>
<td></td>
</tr>
<tr>
<td>Gas station</td>
<td></td>
</tr>
<tr>
<td>harbour</td>
<td></td>
</tr>
</tbody>
</table>

* Green: operated ECV
<table>
<thead>
<tr>
<th>Applications</th>
<th>Essential Cryospheric Variables (ECV) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>River ice</td>
<td>Length of frozen river, thickness, frozen date, break-up date, snow cover on ice, concentration, types, roughness, ice volume, width, flow velocity</td>
</tr>
<tr>
<td>Lake ice</td>
<td>Frozen date, break-up date, thickness, snow cover on ice, concentration, temperature, salinity, surface energy balance</td>
</tr>
</tbody>
</table>

* Green: operated ECV
Summary

- Existing nice network on High Asia
- Harsh condition of HA not enable observe all ECVs, IGOS-C
- GCW may need define ECVs in every specific region, i.e., regional standards
- Which ECVs should be international homogeneous standards, which should be regional ones?
- Define baseline reference sites and integrated (supersite)